(2.30)Воспользуемся формулой (2.30) и рассчитаем, какова должна быть начальная скорость, чтобы косми — AstroStory

(2.30)

Воспользуемся формулой (2.30) и рассчитаем, какова должна быть начальная скорость, чтобы космический аппарат, запущенный с поверхности Земли, покинул пределы Солнечной системы. В этом случае гелиоцентрическая скорость аппарата V должна быть равна параболической скорости относительно Солнца. Круговая скорость Земли относительно Солнца Vc = 29,8 км/сек (см. §40). Параболическая скорость относительно Солнца на расстоянии Земли от Солнца равна Vп = = 42,l км/сек. Следовательно, гелиоцентрическая скорость космического аппарата должна быть равна V = Vп = 42,1 км/сек. Если за гелиоцентрическую скорость Земли V3 принять ее круговую скорость Vc , т.е. V3 = Vc = 29,8 км/сек, то при выходе космического аппарата из сферы действия Земли в направлении орбитального движения Земли его дополнительная скорость будет такой: Vдоп = Vп — Vc = (42,1 — 29,8) км/сек = 12,3 км/сек. а при выходе в сторону, противоположную орбитальному движению Земли, Vдоп = Vп + Vc = 71,9 км/сек. Тогда начальная скорость космического аппарата, согласно формуле (2.30), в первом случае будет равна а во втором случае Следовательно, скорость, при которой запущенный с Земли космический аппарат может уйти за пределы Солнечной системы, сильно зависит от направления выхода аппарата из сферы действия Земли по отношению к направлению орбитального движения Земли и лежит в пределах 16,6 км/сек Ј v0 Ј 72,8 км/сек. Минимальная скорость v3к = 16,6 км/сек называется третьей космической скоростью относительно Земли.

§ 61. Определение радиуса Земли. Триангуляция

Согласно теории всемирного тяготения всякое массивное, изолированное тело, вращающееся вокруг оси с определенной скоростью (не очень быстро), должно принять форму, близкую к шару. Действительно, все наблюдаемые массивные небесные тела (Солнце, Луна, планеты) имеют формы, мало отличающиеся от правильных шаров. Шарообразность Земли хорошо видна на ее фотографиях, полученных из космоса (1967-1969 гг.).

Шарообразность Земли позволяет определить ее размеры способом, который был впервые применен еще Эратосфеном в III в. до н. э. Идея этого способа проста. Возьмем на земном шаре две точки O1 и О2 , лежащие на одном географическом меридиане (рис. 38). Обозначим длину дуги меридиана O1O2 (например, в километрах) через l, а ее угловое значение (например, в градусах) — через п°. Тогда длина дуги 1° меридиана l0 будет равна а длина всей окружности меридиана где R — радиус земного шара. Отсюда Угловое значение дуги п° равно разности географических широт точек O1 и О2, т.е. п° = j 1 — j 2 , определение которых представляет простую астрометрическую задачу (см. §86, 87). Значительно сложнее определить линейное расстояние l между точками O1 и О2. Непосредственное измерение расстояния по кратчайшей линии между этими точками, отстоящими одна от другой на сотни километров, невыполнимо вследствие естественных препятствий — гор, лесов, рек и т.п. Поэтому длина дуги l определяется путем вычислений с помощью специального способа, который требует непосредственного измерения только сравнительно небольшого расстояния — базиса и ряда углов. Этот способ разработан в геодезии и называется триангуляцией. Суть метода триангуляции заключается в следующем. По обе стороны дуги O1О2 (рис. 39), длину которой необходимо определить, выбирается несколько точек А, В, С, . на расстояниях 30-40 км одна от другой. Точки выбираются так, чтобы из каждой были видны по меньшей мере две другие точки. Во всех точках устанавливаются геодезические сигналы — вышки в форме пирамид — высотой в несколько десятков метров. Наверху сигнала устраивается площадка для наблюдателя и инструмента. Расстояние между какими-нибудь двумя точками, например O1А , выбирается на совершенно ровной поверхности и принимается за базис. Длину базиса очень тщательно измеряют непосредственно с помощью специальных мерных лент. Наиболее точные современные измерения базиса длиной в 10 км производятся с ошибкой ±2 мм. Затем устанавливают угломерный инструмент (теодолит)

последовательно в точках O1, A, В, С, ., O2 и измеряют все углы треугольников O1АВ, АВС, BCD, . Зная в треугольнике O1AB все углы и сторону O1A (базис), можно вычислить и две другие его стороны O1B и АВ, я зная сторону АВ и все углы треугольника ABC. можно вычислить стороны АС и ВС и т.д. Иными словами, зная в зтой цепи треугольников только одну сторону (базис) и все углы, можно вычислить длину ломаной линии O1BDO2 (или O1ACEO2 ) . При этих вычислениях учитывается, что треугольники не плоские, а сферические. Далее, определив из точки O1 азимут направления стороны O1В (или O1A), можно спроецировать ломаную линию O1ВDO2 (или O1АСЕO2 ) на меридиан O1O2 , т.е. получить длину дуги O1O2 в линейных мерах.

Страницы: 98 99 100 101 102 103 104 105 106 107 108

5. АБСОЛЮТ
И сказал Бог: да будет твердь посреди воды, и да отделяет она воду от воды. И стало так. И создал Бог твердь, и отделил воду, которая под твердью, от воды, которая над твердью. И стало так. И наз …

ОТ АВТОРА
В 1795 году в Эдо (старое название Токио) по приглашению первого министра прибыл один из старейших людей Японии — крестьянин Мамиэ. Ему было 193 года. На вопрос министра, в чем секрет его долголет …

Гонор Лев Робертович
Лев Робертович Гонор родился 15 сентября 1906 года в местечке Городище Черкасского уезда Киевской губернии в семье наборщика. После революции 1917 года его отец работал организатором книжной торговл …

Понравилась статья? Поделиться с друзьями: