Таким образом, не зная координат других светил, мы получим склонение d данной звезды и географическу — AstroStory

Таким образом, не зная координат других светил, мы получим склонение d данной звезды и географическую широту j места наблюдения. После того как широта места j будет многократно определена из наблюдений нескольких незаходящих звезд, взяв среднее арифметическое ее значение j 0 и измерив зенитное расстояние уже любой звезды в момент кульминации, получим склонение звезды по одной из следующих формул: d = j 0 — z, если звезда кульминировала к югу от зенита; d = j 0 + z, eсли звезда кульминировала к северу от зенита; d = 180 ° — j — z, если звезда наблюдалась в нижней кульминации. Абсолютный метол определения прямых восхождений основан на том соображении, что из наблюдений Солнца можно найти его прямое восхождение a ¤, не зная прямых восхождений других светил. Действительно, пусть на рис. 67 QQ’ — небесный экватор, EE’ — эклиптика, A точка весеннего равноденствия, e — наклонение небесного экватора к эклиптике, а С — положение Солнца на эклиптике в некоторый момент. Тогда дуга Cm — склонение d ¤Солнца, а дуга Am — его прямое восхождение a ¤.

Из прямоугольного треугольника СmA, согласно формуле (1.35), следует:

(6.13)

Следовательно, если известно склонение Солнца d ¤в некоторый момент и угол e, то по формуле (6.13) можно вычислить прямое восхождение Солнца для этого же момента. Измеряя зенитное расстояние z¤ Солнца в момент его верхней кульминации, т. е. в истинный полдень, мы для каждого дня наблюдений можем знать его склонение d ¤. Склонение Солнца меняется с каждым днем (см. §16). Из наблюдений, произведенных около дней летнего и зимнего солнцестояний, можно определить его экстремальные значения, абсолютная величина которых и будет как раз равна углу наклона е эклиптики к экватору. С полученным значением e по формуле (6.13) можно вычислить a ¤в момент истинного полудня для каждого дня наблюдений. Кроме того, если при измерении зенитного расстояния отмечать по часам момент T¤ прохождения Солнца через меридиан, то из уравнения Свежая информация ремонт фотоаппаратов на сайте.

s = a ¤= T’¤ + u(6.14)

будет известна также поправка часов и для каждого дня наблюдений и ход часов w (см. §85). Таким образом, абсолютный метод определения прямых восхождений сводится к следующему. Выбирается несколько (например, 30-40) звезд, расположенных более или менее равномерно вдоль эклиптики и небесного экватора, настолько ярких, чтобы каждую из них можно было бы наблюдать и днем, до или после наблюдений Солнца. Такие звезды называются главными или часовыми. При наблюдении часовых звезд отмечаются моменты их прохождения через меридиан Т’1 , Т’2 , ., Т’n . При наблюдении Солнца отмечается момент T’¤ его прохождения через меридиан и измеряется зенитное расстояние z¤. По измеренному зенитному расстоянию Солнца вычисляется его склонение d ¤и прямое восхождение сто для каждого дня наблюдений в моменты его верхней кульминации. По уравнению (6.14) вычисляются поправки часов на моменты наблюдений Солнца, а по ним — ход часов. Далее, для каждого дня наблюдений Солнца и часовых звезд составляются следующие уравнения:

a ¤= T ‘¤+ u.

(6.15)

a 1 = T ‘1 + u1,

a 2 = T ‘2 + и2 ,

……………

a n = T’n + un.

В первом из этих уравнений известны все величины, в остальных — только моменты прохождений звезд через меридиан T ‘i . Прямые восхождения часовых звезд a i , и поправки часов и, пока не известны. Но поправки часов u i , для моментов кульминации каждой часовой звезды легко найти через известные поправку и и ход часов w, а именно: u i = u + w (T’ i — T’¤) . Тогда уравнения (6.15) запишутся так:

a¤ = T’¤ + u,

a 1 = T ‘1 + u + w (T ‘1 — T’¤),

a 2 = T ‘2 + u + w ( T ‘2 — T’¤),

…………………………….

a n = T’n + u + w (T ’n — T’¤)

Из этих уравнений и определяются прямые восхождения Солнца и часовых звезд абсолютным методом. При этом выгоднее производить такие определения по наблюдениям, проведенным при небольших значениях абсолютной величины склонения Солнца, т.е. около дней весеннего и осеннего равноденствий. В этом случае прямые восхождения получаются точнее. При абсолютном методе определения прямых восхождений звезд наблюдения Солнца необходимы для фиксации положения точки весеннего равноденствия на небе относительно этих звезд. С этой целью вместо Солнца можно наблюдать любую планету Солнечной системы, если элементы ее орбиты известны с достаточной степенью точности. Наблюдения планет точнее, чем наблюдения Солнца. Особенно выгодны в этом отношении малые планеты. Условия наблюдений малых планет практически не отличаются от условий наблюдения звезд и поэтому результаты их наблюдений свободны от тех специфических ошибок, которые присущи наблюдениям больших планет и Солнца. б) Относительные или дифференциальные методы. Относительные определения координат звезд сводятся к измерению разностей координат Da и Dd определяемых и опорных звезд. Из наблюдений звезд в меридиане получают для каждой опорной и для каждой определяемой звезды моменты прохождения через меридиан T и Ti, и зенитные расстояния z и zi. Так как наблюдения производятся в меридиане, то разность моментов прохождений звезд, опорной (T) и определяемой (Ti ), после учета хода часов есть разность их прямых восхождений, т.е. Т — Ti = a — a i, = Da i, а разность зенитных расстояний есть разность склонений этих звезд, т.е. z — zi = d i — d = Dd i (кульминация к югу от зенита), г — zi = d — d i = Dd i (кульминация к северу от зенита). Из этих соотношений легко получаются искомые координаты a i и d i, определяемой звезды, так как a и d опорной звезды известны. Здесь мы изложили только принципы определения экваториальных координат; на практике дело обстоит значительно сложнее.

Страницы: 118 119 120 121 122 123 124 125 126 127 128

3. ФОРМЫ БЕССМЕРТИЯ
Множественность форм существования человека — факт, достаточно известный, по крайней мере в эзотерической литературе. Почти все источники исходят из возможности существования человека в четырех ос …

Палмахим (Palmachim)
Космодром Израиля. Расположен на средиземноморском побережье в 30 км от Тель-Авива в точке с координатами 31 град. северной широты и 35 град. восточной долготы. Функционирует с 1988 года. Предназнач …

Кондратюк Юрий Васильевич
     Александр Игнатьевич Шаргей родился 9 июня (21 июня по новому стилю) 1897 года в Полтаве (ныне территория Украины). Мать Людмила Львовна Шаргей (в девичестве Шлиппенбах) вс …

Понравилась статья? Поделиться с друзьями: