Комплекс явлений (процессов), предшествующих моменту t0 генерации солнечных космических лучей, а так — AstroStory

Комплекс явлений (процессов), предшествующих моменту t0 генерации солнечных космических лучей, а также процессов, происходящих вблизи момента t0 (сопутствующие эффекты) и сопровождающих генерацию солнечных космических лучей (с запаздыванием Т относительно момента t0 или t0 + Dt, где Dt — длительность ускорения), называется солнечным протонным событием (СПС). Для частиц с eк і 108 эВ зависимость от времени интенсивности потока солнечных космических лучей у Земли (временной профиль СПС) имеет характерный несимметричной вид. Он изображается кривой с очень быстрым нарастанием (за минуты и десятки минут) с более медленным (от нескольких часов до » 1 суток) спадом. При этом амплитуда возрастания на поверхности Земли может достигать сотен и тысяч процентов по отношению к фоновому потоку галактических космических лучей. По мере удаления от поверхности Земли (в стратосфере, на орбитах ИСЗ и в межпланетном пространстве) энергетический порог регистрации солнечных космических лучей постепенно снижается, а частота наблюдаемых протонных событий значительно увеличивается. При этом временной профиль лучей, как правило, растягивается на несколько десятков часов.

Распределение солнечных космических лучей по энергиям и зарядам у Земли определяется механизмом ускорения частиц в источнике (солнечная вспышка), особенностями их выхода из области ускорения и условиями распространения в межпланетной среде, поэтому форму спектра солнечных космических лучей надежно установить весьма трудно. По-видимому, она неодинакова в различных интервалах энергии: в представлении дифференциального энергетического спектра степенной функцией ~ e-gк показатель g по мере уменьшения энергии убывает) (спектр становится более пологим). В межпланетных магнитных полях спектр заметно трансформируется со временем, при этом значение g увеличивается и спектр остается круто падающим, т. е. число частиц быстро уменьшается с ростом энергии. Показатель спектра в источнике может меняться от события к событию в пределах 2 Ј g Ј 5 в зависимости от мощности СПС и рассматриваемого интервала энергий, а у Земли — соответственно в пределах 2 Ј g Ј 7. Полное число ускоренных протонов, вышедших в межпланетное пространство во время мощного СПС, может превышать 1032, а их суммарная энергия і1031 эрг, что сравнимо с энергией электромагнитного излучения вспышки. Высота, на которой происходит ускорение частиц в атмосфере Солнца, по-видимому, неодинакова для разных вспышек: в одних случаях область ускорения (источник) находится в короне, при концентрации частиц плазмы п ~ 1011 см-3, в других — в хромосфере, где п ~ 1013 см-3. На выход солнечных космических лучей за пределы солнечной атмосферы существенно влияет конфигурация магнитных полей в короне.

Ускорение частиц тесно связано с механизмом возникновения и развития самих солнечных вспышек. Основным источником энергии вспышки является магнитное поле. При его изменениях возникают электрические поля, которые и ускоряют заряженные частицы. Наиболее вероятными механизмами ускорения частиц во вспышках принято считать электромагнитные. Частицы космических лучей с зарядом Ze, массой Атр и скоростью n в электромагнитных полях принято характеризовать магнитной жесткостью R = Amp с n/Ze, где А — атомный номер элемента. При ускорении квазирегулярным электрическим полем, возникающим при разрыве нейтрального токового слоя во вспышке, в процесс ускорения вовлекаются все частицы горячей плазмы из области разрыва, при этом формируется спектр солнечных космических лучей вида ~ ехр (-R/R0), где R0 — характеристическая жесткость. Если магнитное поле в области вспышки меняется регулярным образом (например, растет со временем по определенному закону), то возможен эффект бетатронного ускорения. Такой механизм приводит к степенному спектру по жесткостям (~ R-g). В сильно турбулентной плазме солнечной атмосферы возникают также нерегулярно меняющиеся электрические и магнитные поля, которые приводят к стохастическому ускорению. Наиболее детально разработан механизм статистического ускорения при столкновениях частиц с магнитными неоднородностями (механизм Ферми). Этот механизм дает энергетический спектр вида ~ e-gк.

В условиях вспышки основную роль должны играть быстрые (регулярные) механизмы ускорения, хотя теория допускает и альтернативную возможность — медленное (стохастическое) ускорение. Из-за сложности физической картины вспышек и недостаточной точности наблюдений сделать выбор между различными механизмами трудно. Вместе с тем наблюдения и теоретический анализ показывают, что во вспышке может работать некоторая комбинация механизмов ускорения. Принципиально важную информацию о процессах ускорения солнечных космических лучей можно получить, регистрируя поток нейтронов и гамма-излучение от вспышек, а также по рентгеновскому и радио электромагнитному излучению. Данные об этих излучениях, полученные с помощью космических аппаратов, свидетельствуют в пользу быстрого ускорения солнечных космических лучей (за секунды времени).

1. ПРАВИЛА ИГРЫ
На первый взгляд, проблема достижения бессмертия настолько проста, что неразрешимость этой проблемы (по крайней мере, видимая неразрешимость) представляется необъяснимой. С точки зрения современно …

Палмахим (Palmachim)
Космодром Израиля. Расположен на средиземноморском побережье в 30 км от Тель-Авива в точке с координатами 31 град. северной широты и 35 град. восточной долготы. Функционирует с 1988 года. Предназнач …

ЗАПИСКИ ПИЛОТА

Понравилась статья? Поделиться с друзьями: