Звездная алгебра — Глава четвертая. ЗВЕЗДЫ — Занимательная астрономия — Книги — AstroStory

Рассмотрим немного подробнее группу наиболее ярких звезд. Мы уже отмечали, что блеск этих звезд неодинаков: одни светят в несколько раз ярче среднего, другие – тусклее (средняя степень их яркости – такая, которая в 100 раз превышает яркость звезд, едва различимых простым глазом).

Найдем сами обозначение блеска звезд, которые в 2½ раза ярче средней звезды первой величины. Какое число предшествует единице? Число 0. Значит, такие звезды надо отнести к звездам «нулевой» величины. А куда отнести звезды, которые ярче звезд первой величины не в 2½, а всего в полтора или два раза? Их место между 1 и 0, т. е. звездная величина такого светила выражается положительным дробным числом; говорят: «звезда 0,9 величины», «0,6 величины» и т. п. Такие звезды ярче

первой величины.

Теперь станет понятной и необходимость введения отрицательных чисел для обозначения блеска звезд. Так как существуют звезды, по силе света превышающие нулевую величину, то, очевидно, их блеск должен быть выражен числами, стоящими по другую сторону нуля, – отрицательными. Отсюда такие определения блеска, как «минус 1», «минус 2», «минус 1,4», «минус 0,9» и т. п. орехи в шоколаде

В астрономической практике «величина» звезд определяется с помощью особых приборов – фотометров: блеск светила сравнивается с блеском определенной звезды, сила света которой известна, или же с «искусственной звездой» в приборе.

Приводим перечень самых ярких звезд неба с обозначением их звездной величины (в скобках указано наименование созвездия):

Просматривая этот перечень, мы видим, что звезд точно первой величины не существует вовсе: от звезд величины 0,9 список переводит нас к звездам 1,1 величины, 1,2 величины и т. д., минуя величину 1,0 (первую). Звезда первой величины есть, следовательно, не более, как условный стандарт блеска, но на небе ее нет.

Не следует думать, что распределение звезд по звездным величинам обусловлено физическими свойствами самих звезд. Оно вытекает из особенностей нашего зрения и является следствием общего для всех органов чувств «психофизиологического закона Вебера—Фехнера». В применении к зрению закон этот гласит: когда сила источника света изменяется в геометрической прогрессии, ощущение яркости изменяется в прогрессии арифметической. (Любопытно, что оценка интенсивности звуков и шумов производится физиками по тому же принципу, что и измерение блеска звезд; подробности об этом читатель найдет в моих «Занимательной физике» и «Занимательной алгебре».)

Познакомившись с астрономической шкалой блеска, займемся некоторыми поучительными подсчетами. Вычислим, например, сколько звезд третьей величины, вместе взятых, светят так же, как одна звезда первой величины. Мы знаем, что звезда третьей величины слабее звезды первой величины в 2,52, т. е. в 6,3 раза; значит, для замены понадобится 6,3 такой звезды. Звезд четвертой величины для замены одной звезды первой величины пришлось бы взять 15,8 и т. д. Подобными расчетами найдены числа приводимой ниже таблицы.

Для замены одной звезды первой величины нужно следующее число звезд других величин:

Начиная с седьмой величины, мы вступаем уже в мир звезд, недоступных простому глазу. Звезды 16-й величины различаются лишь в весьма сильные телескопы: чтобы можно было видеть их невооруженным глазом, чувствительность естественного зрения должна возрасти в 10 000 раз, тогда мы увидим их такими, какими видим сейчас звездочки шестой величины.

В приведенной выше таблице не могли, конечно, найти себе места звезды «перед-первой» величины. Сделаем расчеты также для некоторых из них. Звезда 0,5-й величины (Процион) ярче звезды первой величины в 2,50,5, т. е. в полтора раза. Звезда минус 0,9-й величины (Канопус) ярче звезды первой величины в 2,59, т. е. в 5,8 раза, а звезда минус 1,6-й величины (Сириус) – в 2,52,6, т. е. в 10 раз.

7. СТРУКТУРА РЕАЛЬНОСТИ
И совершил Бог к седьмому дню дела Свои, которые Он делал, и почил в день седьмый от всех дел Своих, которые делал. Из всех чисел натурального ряда семерка, пожалуй, самое «сакральное» число. Смыс …

2. РИТМЫ ТАНЦА
Во всем спектре вопросов, связанных с уровнями существования человека, с ритмами его танца, есть один аспект, исследованный методами научного знания. Именно его мы и возьмем за точку отсчета. Изв …

ОТ АВТОРА
В 1795 году в Эдо (старое название Токио) по приглашению первого министра прибыл один из старейших людей Японии — крестьянин Мамиэ. Ему было 193 года. На вопрос министра, в чем секрет его долголет …

Понравилась статья? Поделиться с друзьями: