§ 50. Второй закон КеплераВозьмем прямоугольную систему координат, начало которой находится в ц — AstroStory

§ 50. Второй закон Кеплера

Возьмем прямоугольную систему координат, начало которой находится в центре притяжения, а плоскость ху совпадает с плоскостью орбиты тела.

Проектируя ускорение и силу на координатные оси х и у (рис. 31), напишем основное уравнение динамики (2.14) в следующем виде: Умножая эти уравнения соответственно на у и х и вычитая первое из второго, получим или Поскольку сила центральная, то имеет место соотношение Поэтому или

(2.21)

В полярных координатах х = r cos q, у = r sin q, где r — расстояние точки от начала координат (радиус-вектор точки), а q полярный угол (истинная аномалия). Если перейти от прямоугольной системы координат к полярным координатам, то выражение (2.21) будет иметь вид

(2.22)

т.e. площадь, описанная радиусом-вектором за единицу времени, есть величина постоянная. Это есть математическое выражение второго закона Кеплера (см. §40). §51. Третий (уточненный) закон Кеплера

При круговом движении ускорение w = w2r, где угловая скорость , а Т — период обращения по окружности. Следовательно, ускорение Если рассматривать относительное движение по кругу небесного тела с массой т вокруг центрального тела с массой M, то согласно уравнению (2.17) относительное ускорение Так как w и wот — одно и то же ускорение, то, приравняв их правые части, получим

(2.23)

Если рассматривать движение небесного тела по эллипсу, то получится соотношение, аналогичное (2.23), только в нем радиус круга r заменится на большую полуось а, а T будет означать период обращения тела по эллипсу. Напишем это соотношение для двух тел, массы которых т1 и т2 , большие полуоси их эллиптических орбит а1 и a2 , а периоды их обращений вокруг их центральных тел с массами М1 и М2 обозначим через T1 и T2 . Тогда откуда

(2.24)

Это точное выражение третьего закона Кеплера. Если рассматривать движение двух планет вокруг Солнца, т.e. вокруг одного и того же тела (М1 = М2 ), и пренебречь массами планет (т1 «m2 = 0) в сравнении с массой Солнца, то получим формулу (2.7), выведенную Кеплером из наблюдений: Так как массы планет в сравнении с массой Солнца незначительны, то формула Кеплера достаточно хорошо согласуется с наблюдениями. Формулы (2.23) и (2.24) играют большую роль в астрономии: они дают возможность определять массы небесных тел (см. §58).

§ 52. Понятие о возмущенном движении

Если бы какое-нибудь тело Солнечной системы притягивалось только Солнцем, то оно двигалось бы вокруг Солнца точно по законам Кеплера. Такое движение, соответствующее решению задачи двух тел, называют невозмущенным. В действительности же все тела Солнечной системы притягиваются не только Солнцем, но и друг другом. Поэтому ни одно тело в Солнечной системе не может точно двигаться по эллипсу, параболе, гиперболе и тем более по кругу. Отклонения в движениях тел от законов Кеплера называются возмущениями, а реальное движение тел — возмущенным движением. Возмущения тел Солнечной системы имеют очень сложный характер, и их учет чрезвычайно труден, хотя они сравнительно и невелики, так как массы этих тел по сравнению с массой Солнца очень малы (общая их масса меньше массы Солнца). Возмущения можно рассматривать как различие между положениями светила при возмущенном и невозмущенном движениях, а возмущенное движение тела представлять как движение по законам Кеплера с переменными элементами его орбиты. Изменения элементов орбиты тела вследствие притяжения его другими телами, помимо центрального, называются возмущениями, или неравенствами элементов. Возмущения элементов делятся на вековые и периодические. Вековые возмущения тел Солнечной системы зависят от взаимного расположения их орбит, которое в течение очень больших промежутков времени изменяется очень мало. Поэтому вековые возмущения элементов происходят в одном и том же направлении и величина их приблизительно пропорциональна времени. Вековым возмущениям подвержены два элемента орбиты — долгота восходящего узла

§ 53. Понятие о возмущающей силе

Пусть имеются три небесных тела: Солнце С с массой М, планета P1 с массой m1 на расстоянии r1 от центра Солнца и планета Р2 с массой т2 на расстоянии r2 от центра Солнца и на расстоянии r от планеты Р1 (рис. 32). Все три тела действуют друг на друга по закону всемирного тяготения Ньютона. Солнце получает ускорение по направлению СР2 от планеты P1 и ускорение по направлению СР2 от планеты Р2 . Рассмотрим движение планеты P1 относительно Солнца. В этом случае на планету P1 будут действовать силы, вызывающие следующие ускорения:

Страницы: 92 93 94 95 96 97 98 99 100 101 102

7. СТРУКТУРА РЕАЛЬНОСТИ
И совершил Бог к седьмому дню дела Свои, которые Он делал, и почил в день седьмый от всех дел Своих, которые делал. Из всех чисел натурального ряда семерка, пожалуй, самое «сакральное» число. Смыс …

ЗАПИСКИ ПИЛОТА

6. СИЛЫ ПРЕДЕЛОВ
Где ты был, когда Я полагал основание земли?.. Кто затворил море воротами, когда оно исторглось, вышло как бы из чрева, когда Я облака сделал одеждою его и мглу пеленами его. И утвердил Мое опреде …

Понравилась статья? Поделиться с друзьями: