§ 111. Глаз как приемник излученияВ современной астрономии глаз наблюдателя используется в каче — AstroStory

§ 111. Глаз как приемник излучения

В современной астрономии глаз наблюдателя используется в качестве приемника излучения не очень широко, главным образом при гидировании или в астрометрических наблюдениях. Почти все виды астрофизических исследований выполняются с помощью приемников других типов. Чувствительность глаза зависит от длины волны. В среднем глаз наблюдателя наиболее чувствителен к излучению с длиной волны l m = 5550 Е (зеленый цвет). По мере удаления от l m в обе стороны чувствительность глаза уменьшается и падает до нуля около 3900 и 7600 Е. Это — фиолетовая и красная границы видимой, или визуальной, области спектра. Зависимость чувствительности приемника излучения от длины волны называется спектральной характеристикой. Спектральную характеристику глаза часто называют кривой видности. У разных наблюдателей кривые видности несколько различаются. Средняя кривая видности дневного зрения, принятая международным соглашением, приведена на рис. 109, а. Максимум кривой видности ночного зрения сдвинут в сторону коротких волн примерно на 450 Е.

Минимальный поток излучения, который может быть обнаружен приемником, называется его порогом чувствительности. Порог чувствительности глаза очень мал — около 10-9 эргЧ сек -1. Это соответствует примерно 103 квант/сек. Для того чтобы глаз достиг такой чувствительности, наблюдатель должен некоторое время побыть в темноте, адаптироваться. Явление адаптации к темноте состоит в том, что увеличивается диаметр зрачка, восстанавливается чувствительность ночного зрения и на сетчатой оболочке появляется особое светочувствительное вещество (зрительный пурпур). В результате глаз становится чувствительным к слабому освещению. Способность к адаптации позволяет глазу работать в очень широком диапазоне освещенностей (от дня к ночи освещенность изменяется, например, в 108 раз).

§ 112. Астрофотография

С середины прошлого века в астрономии стал применяться фотографический метод регистрации излучения. В настоящее время он занимает ведущее место в оптических методах астрономии. Длительные экспозиции на высокочувствительных пластинках позволяют получать фотографии очень слабых объектов в том числе таких, которые практически недоступны для визуальных наблюдений. В отличие от глаза, фотографическая эмульсия способна к длительному накоплению светового эффекта. Очень важным свойством фотографии является панорамность: одновременно регистрируется сложное изображение которое может состоять из очень большого числа элементов. Существенно, наконец, что информация, которая получается фотографическим методом, не зависит от свойств глаза наблюдателя, как это имеет место при визуальных наблюдениях. Фотографическое изображение, полученное однажды, сохраняется как угодно долго, и его можно изучать в лабораторных условиях. Фотографическая эмульсия состоит из зерен галоидного серебра (AgBr, AgCl и др.; в различных сортах эмульсии применяются разные соли), взвешенных в желатине. Под действием света в зернах эмульсии протекают сложные фотохимические процессы, в результате которых выделяется металлическое серебро. Чем больше света поглотилось данным участком эмульсии, тем больше выделяется серебра. Галоидное серебро поглощает свет в области l

Звезды на фотографиях выходят в виде кружков. Чем ярче звезда, тем большего диаметра получается кружок при данной экспозиции (рис. 110). Различие в диаметрах фотографических изображений звезд является чисто фотографическим эффектом и никак не связано с их истинными угловыми диаметрами. Научной обработке подвергаются, как правило, только сами негативы, так как при перепечатке искажается заключенная в них информация. В астрономии используются как стеклянные пластинки, так и пленки. Пластинки предпочтительны в тех случаях, когда по негативам изучается относительное положение объектов. Сравнивая между собой фотографии одной и той же части неба, полученные в разные дни, месяцы и годы, можно судить об изменениях, которые в этой области произошли. Так, смещение малых планет и комет (когда они находятся далеко от Солнца и хвост еще не заметен) среди звезд легко обнаруживается при сравнении негативов, полученных с интервалом в несколько суток. Собственные движения звезд, а также отдельных сгустков межзвездного вещества в газовых туманностях изучаются по фотографиям, полученным через большие интервалы времени, иногда достигающие многих десятилетий. Изменение блеска переменных звезд, вспышки новых и сверхновых звезд тоже легко обнаруживаются при сравнении негативов, полученных в разные моменты времени. Для исследования подобных изменений используются специальные приборы стереокомпаратор и блинк-микроскоп. Стереокомпаратор служит для обнаружения перемещений. Он представляет собой своего рода стереоскоп. Обе пластинки, снятые в разное время, располагаются так, что исследователь видит их изображения совмещенными. Если какая-либо звезда заметно сместилась, она “выскочит” из картинной плоскости. Блинк-микроскоп отличается от стереокомпаратора тем, что специальной заслонкой можно закрывать либо одно либо другое изображение. Если эту заслонку быстро колебать, то можно сравнивать не только положения, но и величины изображений звезд на обеих пластинках. Изменение положения или изменение звездной величины при этом легко обнаруживаются. Точные измерения положений звезд на пластинках производятся на координатных измерительных приборах. Почернение негатива приблизительно определяется произведением освещенности Е на продолжительность экспозиции t. Этот закон называется законом взаимозаместимости. Он выполняется более или менее хорошо лишь в ограниченном интервале освещенности. Для каждого сорта эмульсии можно указать освещенность или экспозиции, при которых он наиболее эффективен. В частности, очень чувствительные кино- и фотопленки, предназначенные для коротких экспозиций, не пригодны для длительных, применяемых в астрономии. Фотография позволяет проводить фотометрические исследования астрономических объектов, т.е. определять количественно их яркость и звездную величину. Для этого необходимо знать зависимость почернения негатива от освещенности провести калибровку негатива. Чтобы измерить степень почернения, надо пропустить сквозь негатив световой пучок, интенсивность которого регистрируется. Тогда почернение D можно выразить через оптическую плотность негатива:

Страницы: 143 144 145 146 147 148 149 150 151 152 153

3. ФОРМЫ БЕССМЕРТИЯ
Множественность форм существования человека — факт, достаточно известный, по крайней мере в эзотерической литературе. Почти все источники исходят из возможности существования человека в четырех ос …

О ТАЙНАХ, СЕКРЕТАХ И МАГИЧЕСКОМ ПОРТАЛЕ
Тайное знание… Вряд ли есть что-нибудь более притягательное для человека, чем узнать то, что не знает никто другой. Секреты, которые сделают его сильнее, например, способ разбогатеть, вернуть утра …

6. СИЛЫ ПРЕДЕЛОВ
Где ты был, когда Я полагал основание земли?.. Кто затворил море воротами, когда оно исторглось, вышло как бы из чрева, когда Я облака сделал одеждою его и мглу пеленами его. И утвердил Мое опреде …

Понравилась статья? Поделиться с друзьями: